컬러&디스플레이 2021.07.22

[컬러 & 디스플레이] 제 7화: 빛과 그림자 사이의 무한한 간극 ‘HDR’

“어둠이 깊을수록 별은 더 밝게 빛난다”와 같은 표현은 여러 가지로 변용되어 강연에서, 수필에서, 노래에서도 자주 인용되었다. 원래 러시아의 문필가 표도르 도스토옙스키(Fyodor Dostoevsky)가 <죄와 벌>에서 언급한 명언이라는 설도 있었지만, 동시대 시인 아폴론 마이코프(Apollon Maykov)의 시 한 구절이라는 주장도 있다. 어둠은 죄를 뜻하고 별빛은 신의 은총으로 해석되지만, 색채 연구자들에게는 명암 대비와 휘도(輝度, luminance)의 관계를 연상시킨다. 밝은 정도를 뜻하는 휘도는 일반적인 밝기(明度, brightness)와 약간 다르다. 휘도는 빛을 발하는 밝음의 상태를 구분하는 말이다. 그런데 밝음의 정도는 상대적이다. 촛불 하나를 켜면 어두운 방을 은은하게 밝힐 수 있지만, 전등 아래에서는 환하게 보이지 않는다. 환한 조명도 햇볕 아래에서는 밋밋하다. 그러니 깜깜한 밤의 벌판에서는 작은 불빛도 구원의 계시처럼 보일 수 있다. 도스토옙스키는 험한 시베리아의 유배 생활을 등잔불 아래에서 성경과 함께 이겨냈다고 한다. 허름한 교도소의 침침한 불빛 속에서 손가락을 짚어가며 읽은 성경의 구절구절은 대문호로 가는 먼 길을 환히 밝힌 빛이었을 것이다. 빛의 세기, 즉 광도(光度)를 측정하는 단위는 촛불 하나의 밝기 정도인 칸델라(candela)인데, 줄여서 cd라고 쓴다. 원래 포르투갈어로 양초를 뜻하던 칸델라는 네덜란드 상인들을 통해 전 세계로 보급된 이동식 조명기구 칸델라르(Kandelaar)를 지칭하기도 했다. 광물질 카바이드(carbide)에 물을 섞으면 아세틸렌 가스로 바뀌어 잘 연소하는 원리를 이용한 이 조명 장치는 실제로 약 5cd의 빛을 발했다. 촛불보다 더 밝고 한번 불을 붙이면 7시간 정도 지속하여 19세기 노동 현장부터 초기 자동차 전조등까지 두루 쓰였다. 1950년대 독일 뮌헨에서 유학했던 수필가 전혜린은 안개 자욱한…
더보기
컬러&디스플레이 2021.06.22

[컬러 & 디스플레이] 제 6화: 빛으로 세상을 기록하다! ‘컬러와 영상’

세상은 빛으로 가득 차 있다. 여름 하늘의 푸른 하늘색도 눈부시게 빛나고, 뙤약볕의 태양은 눈을 뜨고 바라볼 수 없을 정도로 하얗게 빛난다. 태양의 가시광선 아래에서 우리는 세상의 모든 컬러를 바라보고 인식할 수 있다. 만약 태양이 없다면 세상의 컬러는 어떻게 보일까? 모든 색의 기준은 근본적으로 정오의 햇빛을 기준으로 삼았기 때문에 태양이 없는 세상에는 컬러도 없다고 가정할 수 있다. 흑체(黑體)와 같은 암흑 그 자체일 것이다. 밤에 방안의 불을 끄고 어둠에 눈이 적응하기 전에 주변을 둘러보면 모든 색이 다 검정에 가까운 무채색의 공간으로 보인다. 컬러는 그래서 항상 빛을 전제로 한다. 빛이 없으면 컬러도 없다. 뉴턴의 발견 이전부터 사람들은 색이 빛에 종속되어 있다는 사실을 생활에서 이미 체득했다. 다만 어떤 빛인가에 따라 대상과 공간의 컬러도 다르게 보인다는 사실은 오랜 논쟁을 야기했다. 사물의 고유색 논쟁부터 인상주의 그림까지 컬러는 항상 수수께끼와 같았다. 햇빛은 지구 전체를 고루 비추고 있지만, 땅 위의 볕은 시시각각 변하는 것처럼 보인다. 날씨와 계정에 따라 빛이 다르게 느껴지고, 하루 종일 빛깔이 변한다. 아침의 햇빛은 푸르스름하지만 저녁의 볕은 노르스름하다. 똑같은 나뭇잎도 시간에 따라 다른 녹색으로 변한다. 같은 시간의 햇빛이라도 산 위에서 보는지 바다에서 내리쬐는지 또 다르다. 지구로 들어오는 태양광이 동일하다고 할지라도, 이 모든 다름은 지구의 대기 변화에 따른 변덕이다. 전 세계의 모든 슈퍼컴퓨터로도 예측하기 어려울 정도로 복잡미묘한 지구 대기의 변화는 인간이 감지하는 빛의 변화를 끊임없이 만들어…
더보기
컬러&디스플레이 2021.06.02

[컬러 & 디스플레이] 제 5화: 현실을 더 실감나게 재현하는 디지털 컬러의 마법!

봄기운이 완연하던 5월 초, 마법 같은 소식이 들렸다. KAIST의 연구팀이 입을 수 있는 OLED 디스플레이를 개발했다는 뉴스였다. 30 마이크로미터 굵기의 미세 섬유 속에 OLED 소자를 넣고 코팅하여 평면 디스플레이와 같은 수준의 전자 섬유를 개발한 것이다. 기존의 실험적인 샘플들보다 훨씬 발전한 성능을 보여주었으며, 높은 휘도와 낮은 전력 소비율로 실용화에 한 걸음 더 다가섰다는 평가를 받고, 인지도 높은 국제 저널에도 실렸다. 입는 디스플레이(wearable display)는 입는 로봇(wearable robots)처럼 인간의 능력과 상상력을 극대화할 수 있는 장치다. 카멜레온처럼 환경에 따라 옷 색깔을 쉽게 바꿀 수 있다면, 기분에 따라 스타일을 자주 변화시킬 수 있다면 우리의 생활 자체가 달라질 것이다. 오래전 <해리 포터>의 투명 망토 기술이 화제가 되었던 것처럼, 그럴듯하게 상상해온 아이디어는 아주 늦을 수는 있지만 대부분 현실화되었다. 하늘을 날며 외계의 적을 무찌르는 로봇이 아직 상상 속에 남은 것처럼, 옷 전체를 시시각각 변화하는 디스플레이로 사용하는 기술도 당분간은 마법 같은 상상에 머물 것이다. 마법과 같은 컬러 세상 ▲ 1954년 미국에서 출시된 RCA TV는 둥근 튜브 형태의 화면에 컬러 방송을 보여준 최초의 제품이었다 (출처: 위키피디아) 컬러는 마법과 같다. 지금 우리나라의 50대 이상 계층은 1981년 컬러 방송이 처음 시작되던 새해 첫날을 기억한다. 한적한 농촌과 도서에 전기가 들어간 지 채 몇 년 지나지 않아서 컬러 방송이 시작되었으니, 무척 놀라운 경험이었다고들 말한다. 전기가 없던 시절은 너무도 어두웠다. 집마다 켜 놓은 남포등과 촛불이 전부였다. 밝은 달이 뜨지 않은 날에는 칠흑같이…
더보기
컬러&디스플레이 2021.04.23

[컬러 & 디스플레이] 제 4화: 디스플레이 색공간과 해상도 디스플레이 화질, 현실의 색을 넘어서다

올림픽이나 월드컵 경기의 개최는 건설, 관광, 컨벤션, 서비스, 전자 등 모든 산업이 성장하는 계기가 되어왔다. 일본의 전자 산업계는 이번 도쿄올림픽을 재도약의 발판으로 삼으려 했다. 특히 전 세계로 송출되는 중계방송을 통해 자신들의 영상 관련 기술을 홍보할 기회로 보았다. TV 시청자들의 눈에는 경쟁하는 선수들이 보이지만, 올림픽과 같은 글로벌 이벤트의 이면에는 전자업계의 시장확보를 위한 치열한 전쟁도 숨어 있다. 이번 올림픽을 계기로 전자업계가 갈고 닦은 무기는 초고화질 8K 영상 시스템이다. 아직 세계적으로 4K UHD 해상도의 방송도 완전히 정착되지 않은 상황에서 그 4배의 화질을 가진 8K 영상은 오버 스펙으로 보일 수 있다. 그러나 지금까지의 기술 발전 추세를 볼 때 초고화질 영상 시스템은 머지않아 대량으로 파급될 것이다. 사람의 감각은 더 높은 품질에 잘 감응하고 몰입한다. 그래서 우리의 시각도 더 좋은 화질을 보면 다시 낮은 화질로 되돌아가기 어렵다. 스크린이 크고 고화질일수록 임장감(臨場感)과 현장감(現場感)이 높다. 임장감(presence)은 그 장소에 들어가 있는 것처럼 보인다는 의미고, 현장감(reality)은 그 장소가 눈앞에 실재하는 것처럼 펼쳐진다는 느낌이다. 초고화질은 구석기 동굴벽화 이래 사실적인 재현(representation)을 향한 노력의 정점이다. 아날로그부터 디지털까지, 해상도의 변천사 영상 품질에 가장 중요한 요소인 해상도는 지난 20년간 드라마틱한 발전을 보여주었다. 20년 전 아날로그 영상을 디지털로 전환할 때의 기준 해상도는 세로 방향으로 480픽셀이었다. 영상 가전제품의 광고에 ‘수평 해상도 360선 고화질 영상’ 같은 문구도 있던 상황이었으므로 480선의 해상도는 분명한 발전이었다. 게다가 여러 번 복사하거나 편집해도 화질의 손상이나 노이즈가 생기지 않으니 디지털 영상의 장점은 큰 가치를 지니고…
더보기
컬러&디스플레이 2021.03.22

[컬러 & 디스플레이] 제 3화: 빛의 생성과 색채 관계, 우주의 빛으로 시작해 세상의 색으로 남다!

인간의 세상이 속해 있는 이 광대한 우주는 약 138억 년 전에 하나의 작은 점에서 비롯되었다. 엄청난 에너지가 압축된 점에 특이점(singularity)이 생겨 갑자기 폭발하면서 계속 팽창하는 우주를 형성하게 되었다고 빅뱅이론은 설명한다. 부피도 없는 작은 점이 어떻게 발산하여 백억 년을 넘게 지나면서 크기의 우주를 만들었는지 아직도 풀리지 않는 의문점이 많다. 이런 미스터리에 대해 구약 성경의 창세기에는 만물의 시작을 언급하며 ‘태초에 빛이 있으라 이르시니 빛이 있었다’는 표현이 나온다. 실제로 태초의 우주는 빅뱅 직후 플라즈마 상태를 거쳐 서서히 빛을 발했을 것으로 알려졌다. 마치 폭탄이 터지기 직전의 순간처럼 원자핵과 전자 같은 소립자들이 뒤엉킨 상태에서는 빛을 낼 수 없었다. 화약에 충격 에너지가 가해져 불씨를 만들고 폭발을 일으키듯, 흩어졌던 전자와 핵이 결합하여 중성의 원자 구조를 갖추면서 비로소 광자(photon)들이 빛을 발할 수 있었다. 이러한 최초의 빛은 빅뱅의 뜨거운 순간으로부터 대략 38만 년이 지나서 빛의 분리기(decoupling era)에 나타났다고 한다. 우주의 기나긴 역사에서 보면 최초의 순간에 속한다. 태초의 빛은 우주배경복사(Cosmic Background Radiation)로 남아 여전히 팽창하는 우주를 가득 채우고 있다. 세상은 빛으로 시작되었다. 세상 모든 빛은 암흑 속에서 피어난다. ▲ 가시광선의 색도도(chromacity scale diagram)에서 흑체궤적(black body locus) 또는 플랑크 궤적(Planckian locus)은 아치 형태로 가운데를 가로지르고 있다. 절대온도에 맞춘 색온도에 따라 눈금별로…
더보기
컬러&디스플레이 2021.02.22

[컬러 & 디스플레이] 제 2화: 색채의 물리적 정의란? 빛과 색의 관계를 알아보자!

닭이 먼저일까? 달걀이 먼저일까? 살면서 누구나 한 번쯤은 들어보고 고민도 했을 법한 이야기이다. 참 고민스러운 내용이다. 달걀이 먼저라면 그 달걀은 누가 낳았으며, 닭이 먼저라면 그 닭은 어떻게 탄생했는가? 이렇게 꼬리에 꼬리를 무는 재미있는 이야기가 색채에도 숨겨져 있다. 오늘은 우주부터 스마트폰 화면까지, 빛과 색의 관계를 알아보도록 하자. 빛이 먼저일까, 색이 먼저일까? ▲ 케이시 애플턴(Katy Appleton)의 사진 작품은 뉴턴의 광학 스펙트럼 이미지를 일상에서 찾은 이미지를 프레임에 담은 것이다. (출처: BBC) 영국 왕립사진협회(Royal Photographic Society)가 주최한 올해의 과학 사진가 공모전에서 18세 미만 부문에 수상작으로 발표된 작품은 뉴턴의 광학 스펙트럼을 일상에서 발견한 청소년의 사진 한 장이었다. 어린 소녀의 그림자처럼 보이는 검은 실루엣에 무지개색 스펙트럼이 사선 방향으로 펼쳐진 사진이다. 흑백의 대비와 같은 실루엣의 한 가운데에 도드라진 무지개색 패턴의 컬러는 강한 대비 효과를 보여주면서 시선을 이끈다. 프리즘을 관통한 햇빛이 만든 컬러와 함께 인물의 윤곽이 만든 그림자의 조합은 수상자의 소감처럼 매우 간단한 아이디어일 수 있다. 햇빛과 프리즘만 있다면 누구나 만들어 볼 수 있는 이미지인데 왜 왕립사진협회의 심사위원들은 이 사진에 수상의 영예를 안겨주었을까? 아마도 과학은 늘 우리의 일상에 있다는 이유일 것이다. 다른 작품들은 대체로 지구 온난화의 문제를 제시하는 북극의 모습이나 심해의 유물을 힘들게 촬영한 것들이었다. 그에 비해 이 사진은 일 년 내내 우리 곁에 보이는 빛과 색에 대한 발견을 보여준다. 너무 가까이 있어서…
더보기
컬러&디스플레이 2021.01.22

[컬러 & 디스플레이] 제 1화: 색채(Color)란 무엇인가?컬러의 의미와 색체계를 알아보자!

대략 10년 전의 기억이다. 번잡한 쇼핑몰 내부의 길을 지나가 갑자기 멈춰 섰다. 유리와 같은 투명한 배경에 영상이 떠오르며 움직이다 사라지는 장면이 보였기 때문이다. 가까이 가서 자세히 보니 분명 디스플레이처럼 얇은 유리판이었다. 그 뒤에는 하얀 쇼윈도로 구성된 공간이 있고, 영상으로 홍보하는 상품이 함께 전시되었다. 설명을 찾아보니 삼성에서 만든 일종의 시제품이라고 했다. 뒷 공간이 보이는 투명한 배경에 떠오르는 화려한 이미지의 영상은 마치 한편의 마술 같았다. 백라이트를 어떻게 처리했는지, 검은색이 투명하게 나타나는 것인지 의문이 꼬리를 물었지만 보이는 것 자체가 모든 질문을 삼켜버렸다. 투명은 인류의 꿈이자 환상이었다. 영화에서 보이는 유령의 이미지는 항상 반투명하게 나타나고, 영화 <해리포터>나 애니메이션 <도라에몽>의 투명 망토처럼 주인공을 숨겨 주기도 한다. 이미 세상을 떠난 가수를 홀로그램으로 부활시켜서 무대에 세우는 시도로 시작해서, 이제는 K-pop 가수들이 홀로그램 무대에 항상 출연하는 상설 공연장도 인기를 끌고 있다. 그만큼 투명은 마술적이다. 색의 시작과 끝은 투명이다  투명은 색이 없는 것처럼 보이지만, 모든 색깔의 빛이 모여서 만들어진다.아이작 뉴턴(Isaac Newton)이 1704년 영국에서 빛과 색채의 관계를 연구하여 발표한 <광학(Opticks)> 저술에는 하얀색의 투명한 빛에서 무지개색의 컬러 스펙트럼이 갈라져 나오는 것을 증명하는 묘사가 나타나 있다. 백색광으로 인식한 투명한 빛은 사실 모든 색상의 빛이 한데 모인 것이라는 증명이다. 색채의 가산 혼합으로 정리된 뉴턴의…
더보기