스토리 2020.06.25

[호기심과학] 병도 주고 약도 주는 자외선, 현명하게 자외선을 차단하는 방법은?

봄이 언제 지나갔는지도 모르게 우리 곁을 훌쩍 지나가 버렸다. 이제 외출하면 갑자기 올라간 기온으로 인해 열기가 확 느껴지면서, 눈이 부실만큼 강하게 햇볕이 내리쬐는 것을 느낄 수 있다. 한낮에 뜨겁게 내리쬐는 태양이지만, 우리가 무언가를 볼 수 있는 것은 바로 이 태양의 ‘빛’ 덕분이다. 사실 현대 사회에서는 태양뿐 아니라 핸드폰과 TV, 모니터 등과 같은 수많은 디스플레이들도 ‘빛’을 내고 있다.   우리가 볼 수 있는 ‘빛’은 무엇일까? 우리가 실제로 물체를 보고, 디스플레이를 통해 다양한 영상을 볼 수 있는 것은 바로 빛 즉, 광선 중에서도 ‘가시광선’이 우리 눈에 들어와서 망막의 시각세포를 흥분시키기 때문에 가능한 일이다. ‘가시광선(可視光線, visible ray)’은 용어 그대로 우리가 볼 수 있는 빛으로, 가시광선의 파장은 380nm(나노미터, 10억 분의 1미터)에서 780nm의 범위이다.  가시광선의 파장이 짧은 순서대로 나열해 보면 ‘보남파초노주빨’이 되는데 가시광선보다 파장이 더 짧거나 길면 우리는 보지 못한다. 가시광선 중 보라색보다 더 파장이 짧은 광선을 자외선(紫外線, Ultraviolet ray, UV)이라고 부른다. 단어 그대로 보라색 바깥쪽이란 의미이다. 그리고 빨간색 가시광선 (610∼590nm)보다 파장이 더 긴 광선을 적외선(赤外線, infrared ray)이라고 부르는데, 이 역시 빨간색 바깥쪽을 말한다. 즉 자외선, 적외선이란 용어 자체가 파장의 범위를 설명하는 것이다. 눈에 보이지 않는 이 광선들이 우리에게 큰 영향을 미치는데, 햇빛을 받으면서 뜨겁다고 느끼는 건 바로 열작용을 주로 하는 적외선 때문이다. 햇빛에 의한 살균작용이 가능하고, 또 피부가 검게 타는 것은 화학작용을 하는 자외선 때문이다. 피부색을 결정하는 멜라닌 색소세포가 자외선에 의해 자극을 받아…
더보기
일상 속 디스플레이 2020.06.23

일상 속 디스플레이의 발견 6편: OLED가 함께하는 최첨단 스마트카! 상상이 현실로?

우리는 일상에서 매 순간 디스플레이를 통해 다양한 일들을 경험합니다. 디스플레이의 기술을 통해 보다 편리해진 삶의 변화를 느끼는 요즘! 아침에 눈을 뜨고 잠들기 전까지 우리와 함께하는 ‘디스플레이 하루의 시대 (Display of Things)’를 일러스트로 만나보세요.
더보기
스토리 2020.06.19

자연과 디자인에서 찾을 수 있는 ‘피보나치 수열’에 숨은 황금비!

피보나치(Leonardo Fibonacci, 1170년 추정 ~ 1250년 추정)는 잘 알려진 중세 유럽의 가장 뛰어난 수학자이다. 당시 유럽에서는 산술과 표기(로마자)를 다르게 하는 불편함이 있었으나 피보나치가 새로운 인도–아라비아 숫자와 그 수를 이용한 셈법을 유럽에 소개하면서 당시 유럽인들의 불편함을 해소하는 계기를 가져다주었다.  우리는 그가 저술한 『산반서』라는 책을 통해 이러한 사실을 알 수 있다. 이 책은 1228년에 출판되었다. 모두 15개의 장으로 구성되어 있고 다양한 연산 방법과 사례를 다루고 있다.   피보나치 수열의 역사적 유래 피보나치는 자신의 책에서 처음으로 오늘날 우리가 사용하고 있는 인도–아라비아 숫자와 이 숫자를 사용하여 수를 쓰는 방법과 셈을 하는 방법을 소개했다. 당시 유럽인들은(우리나라를 포함한 동양도 마찬가지로) 계산은 주판으로 하고, 계산 결과를 로마 숫자(동양의 경우는 한자)로 나타내는 번거로운 일을 해야만 했다. 그런데 인도–아라비아 숫자가 도입되며 계산과 표기를 한꺼번에 할 수 있게 되며 수학은 일대 전환기를 맞이한다. 『산반서』에서 새로운 수를 어떻게 활용하는지 알려주려고 제시된 실용적인 문제는 우리에게 중세의 화폐, 무게와 길이, 사업의 실제 계산과 상품 등 다양한 정보를 준다. 더욱이 이 책에 흥미로운 수학 문제가 많이 소개되어 있다. 그런 문제 중에서 특히 우리의 흥미를 끄는 문제는 토끼의 번식에 관한 것이다. 『산반서』의 12장에 있는 수학 문제에 나타난 수열을 1870년대 프랑스의 수학자 루카스(E. Lucas)가 ‘피보나치 수열’이라고 이름 지었는데, 오늘날 이 수열은 자연계뿐만 아니라, 과학, 건축, 예술에 이르기까지 아름답거나 질서정연한 어떤 형식이 있는 곳이면 빠지지…
더보기
스토리 2020.06.05

전기회로에서는 내가 주인공! ‘축전기’

  쓰임새가 너무나도 많은 팔방미인 축전기 자~ 여기를 보세요. 하나 둘~ 셋! (번쩍!) 예식장에서 사진 기사님의 플래시가 번쩍 터지면 우리가 눈을 못 뜰 정도로 강한 빛이 순간적으로 방출한다. 플래시는 어떤 원리로 그렇게 강한 빛을 순간적으로 발생시킬 수 있는 것일까? 타타타탁~ 컴퓨터로 과제를 하고 있는 현우가 키보드를 능숙하게 두드리고 있다. 키보드 자판을 두드리는 대로 모니터에 글자가 만들어진다는 것이 참 신기하기만 하다. 키보드는 어떤 원리로 자판을 누르면 화면에 글자를 표현할 수 있는 것일까? 초등학교 운동장에서 교장 선생님이 학생들에게 훈화 말씀을 하고 있다. 마이크에 대고 작게 말을 해도 전교생이 다 들릴 만큼 큰 소리가 나온다는 게 대단하다. 마이크는 어떤 원리로 음성 신호를 전기 신호로 바꿀 수 있는 것일까? 위의 세 장면에 공통적으로 사용되는 장치는 콘덴서라고도 불리는 축전기(蓄電器, Capacitors)이다. 축전기는 분리된 양전하와 음전하를 저장함으로써 전기 퍼텐셜에너지를 저장하는 특별한 장치이다. 전기를 ‘축(蓄)’, 즉 쌓아둔다는 것은 무엇을 의미하는 것일까? 이를 이해하기 위해서 눈에 보이지 않는 전기를 물로 비유하여 생각해 보자.   전기를 담는 통 축전기 다음과 같이 물을 담는 통이 있다. 통에 물을 부으면 부을수록 물의 높이(수위)가 점점 올라간다. 이 특별하지 않은 현상이 축전기를 이해하는 기본이다. 하지만 전기는 이러한 통에 쌓아두는 것이 아니다. 전기를 담는 통은 아래와 같이 서로 마주보고 있는 얇은 금속판으로 되어 있다. <그림 2>와 같이 금속판 두 개를 닿지 않게 두고 양 끝에…
더보기
스토리 2020.05.25

세상을 설명하는 통계 공식! ‘정규분포’

세계적 규모의 금융위기가 일어나면 확률로 보아 수만 년에 한 번 있을 만한 일이 생겼다고도 한다. 심지어 1987년 10월 미국에서 있었던 금융상품의 가격 폭락 사태에 대해 전문가들은 그런 규모의 대폭락이 일어날 확률이 10의 160승 분의 1이라고 추정하기도 하였다. 그런데 놀라운 점은 그런 대규모 금융위기가 겨우 지난 몇 십 년 동안만 하더라도 여러 번 일어났다는 사실이다. 1987년 가을, 미국을 비롯한 여러 나라에서 주식가격이 폭락했던 날은 10월 19일, 월요일이었으므로 사람들은 지금도 그날을 ‘블랙 먼데이’라고 부르고 있다. 그런데 그게 마지막이 아니었다. 1998년에는 ‘롱텀 캐피털 매니지먼트’라는 펀드 회사가 무너졌는데 사람들은 그런 일이 일어날 확률을 나타내려면 1이라는 숫자 뒤에 0이 무려 스물세 개나 붙은 엄청나게 큰 수가 필요하다고들 했다. 그걸로 끝이었을까? 아니었다. 그보다 더 큰 위기가 오는 데 수만 년을 기다릴 필요는 없었다. 겨우 10년 뒤인 2008년이 되자 미국의 투자 은행 리먼브라더스가 파산했고 금융위기가 전 세계를 휩쓸었다. 수만 년, 수십만 년에 한 번 일어난다는 대형 사고가 이렇게 자주 일어나다니, 세계 금융시장에 중대한 변화가 생긴 걸까? 아니면 확률 계산에 무슨 심각한 문제가 있었던 걸까? 여러 이유 가운데 확률 계산에 문제가 있다고 생각한 사람들이 집중적으로 비판한 것이 금융상품의 가격이 정규분포를 따를 것이라는 가정이었다.   가우스분포라고도 불리는 정규분포 정규분포는 무엇일까? 정규분포는 확률과 통계학에서 자주 등장할 뿐 아니라 여러 곳에서 매우 중요한 역할을 한다. 이 분포는 영어로는 ‘normal distribution’이라고 부르고 우리말로는 ‘정규분포’라고 번역한다. 또한 ‘가우스분포(Gaussian distribution)’라고도 불린다. 물론 여기서 가우스란 19세기…
더보기
[호기심과학] 생활 속 화학 원리를 발견하다! 달고나 커피에 숨은 과학
스토리 2020.05.22

[호기심과학] 생활 속 화학 원리를 발견하다! 달고나 커피에 숨은 과학 <계면활성제 편>

코로나19 예방을 위한 손 씻기에는 반드시 비누 혹은 핸드워시, 손 세정제 등을 이용해야 한다. 비누를 포함한 손 세정제는 살균 소독제가 아니다. 그런데 어떻게 비누가 코로나19 바이러스를 사멸시킬 수 있을까? 바로 비누가 가장 대표적인 계면활성제이기 때문이다. 우리가 일상적으로 사용하는 치약, 세숫비누, 면도크림, 샴푸, 주방용 중성세제, 세탁용 염기성 세제 등에는 모두 공통적으로 계면활성제가 들어있다. 일반적으로 많은 사람들이 계면활성제라고 하면 세제를 생각하는데, 계면활성제는 세제뿐 아니라 먹는 음식에도 활용된다. 오늘은 바이러스를 사멸시키는 비누뿐 아니라, 최근 인기를 끌고 있는 달코나 커피 속 숨은 계면활성제의 역할을 함께 알아보도록 하자!   간단한 실험으로 확인하는 계면활성제의 능력 물(극성 물질)과 기름(비극성 물질)처럼 서로 성질이 완전히 달라 섞이지 않은 물질을 같이 섞어두면 경계면이 생기게 된다. ‘계면활성제’는 바로 이렇게 서로 다른 성질의 경계면에서 활동할 수 있는 분자를 뜻한다. 이 계면 활성제라는 말 자체가 계면, surface를 active 하게 해 준다는 의미이다. 물하고 기름 사이의 그 경계면을 활성화시켜서 경계를 없애게 해 주는 것이 바로 그 역할. 그래서 물과 기름을 섞이게 할 수 있다. 간단한 실험이지만 계면활성제의 능력을 확인할 수 있는 실험이 있다. 물과 기름에 아무것도 넣지 않고 섞어주면 일정 시간이 지나면 다시 분리가 된다. 하지만 물과 기름에 계면활성제를 넣고 섞어주면 경계면은 순식간에 사라지고, 물과 기름이 잘 섞이는 상태가 되는 것을 확실하게 눈으로 확인할 수 있다. ▲물과 기름 사이에 뚜렷한 경계면이 있는 상태에 계면활성제를 투여하고 젓기 시작하면 물과 기름의 경계면이 순식간에 사라지기 시작한다.…
더보기
일상 속 디스플레이 2020.05.21

일상 속 디스플레이의 발견 5편: 가상 공간에서 더욱 실감나게 즐기다!

우리는 일상에서 매 순간 디스플레이를 통해 다양한 일들을 경험합니다. 디스플레이의 기술을 통해 보다 편리해진 삶의 변화를 느끼는 요즘! 아침에 눈을 뜨고 잠들기 전까지 우리와 함께하는 ‘디스플레이 하루의 시대 (Display of Things)’를 일러스트로 만나보세요.
더보기
스토리 2020.05.20

어렵지만 재미있는 회로 이론

전기는 눈에 보이지 않는다. 우리가 보는 것은 ‘전기가 만드는 에너지’이다. TV는 전기를 이용해 빛 에너지와 소리 에너지를 만들고, 선풍기는 전기를 이용해 날개를 돌리는 운동 에너지를 만든다. 이처럼 우리는 전기가 만든 에너지를 보면서 마치 전기를 본 것이라고 착각한다. 그만큼 전기에 대해 정확히 알 필요가 있다. 어렵지만 재미있는 회로 이론에 대해 살펴보도록 하자. 아래 사진은 가장 단순한 전기 회로를 구성한 것이다. 과학을 좋아하지 않는 사람이라도 초등학교 때 한 번쯤은 회로를 꾸며봤을 것이다. 건전지와 전구, 그리고 스위치가 보인다. 위의 회로를 기호로 만든 회로도로 표현하면 훨씬 단순하고 쉽게 그릴 수 있다. 전지에서 긴 막대는 플러스(+) 극을, 짧은 막대는 마이너스(-) 극을 나타내고, 전구와 같은 전기기구들은 모두 저항으로 울퉁불퉁한 선으로 나타낸다. 이제 전기 회로를 구성하는 요소들을 하나하나 자세히 들여다보자.   회로를 구성하는 요소들 1. 전위차(Voltage) 여러분이 알고 있는 ‘전압’이란 용어는 사실 공식적인 물리 용어가 아니다. 공식적인 표현은 ‘전위차’이다. 전위차를 알기 위해서는 먼저 전위를 이해해야 한다. 전위는 전기적 위치 에너지를 말하는데, 요즘에는 위치 에너지라는 표현보다 퍼텐셜 에너지를 더 많이 사용한다. 높은 곳에 있는 물체일수록 퍼텐셜 에너지가 커서 더 많은 일을 할 수 있는 것처럼 전기에서도 전위가 높을수록 큰 전기 에너지를 얻을 수 있다. 전지의 플러스(+) 극과 마이너스(-) 극 양 끝의 전위의 차이를 전위차라고 하고 이것을 전기 회로에서 비공식적으로 전압이라고 부른다. 전압의 단위는 이탈리아의 물리학자 ‘알레산드로 볼타(Alessandro Volta)’를 기리기 위해 V를 쓰고, 볼트라고 읽는다. 전압을…
더보기
스토리 2020.04.27

[호기심과학] 사라지기도 하고 나타나기도 하는 마술 같지만 이것이 바로 과학! <굴절률과 형광편>

‘보는 것’은 어떤 과정을 거치는걸까? 아침에 일어나서 눈을 뜨는 순간 광원으로부터 공기를 지나 우리 눈 속으로 들어온 빛은 투명하고 탱글탱글한 볼록렌즈인 수정체에서 ‘굴절’이 일어나면서 망막에 상이 맺히게 된다. 이때부터 잠자리에 들 때까지 눈을 깜빡거리는 순간을 제외하고는 하루 종일 빛의 ‘굴절’을 경험하게 되는 셈이다. 필자가 며칠 전 구매한 갤럭시S20 울트라는 선명한 OLED 화면이 인상적인데, 이 화면에서 나온 빛 역시 매질이 달라질 때마다 ‘굴절’하면서 나의 망막에 도달하게 된다. 이로 인해 망막의 시각세포가 흥분하면 그 흥분을 시각 신경이 전달하게 되어, 마침내는 대뇌의 시각령에서 시각이 성립되게 된다. 우리가 ‘본다(視,see)’ 라는 것을 과학적으로 표현하면 이러한 과정을 거치게 되는 것이다. ▲ 소의 눈에 있는 수정체, 빛이 수정체를 지나면서 굴절하기 때문에 확대된 글자를 보게 된다   다른 매질을 만나면 꺾이는 빛 빛이 한 매질에서 다른 매질로 진행할 때 그 경계면에서 진행 방향이 꺾이는 현상을 ‘굴절’이라고 한다. 매질에 대한 정의를 보면, ‘매질(medium)’은 ‘파동에 의한 요동을 이곳에서 저곳으로 전달해 주는 매개체’이다. 빛이 공기를 통과할 땐 공기가 매질이 되고, 빛이 물속을 지나갈 땐 물이 바로 매질이 된다. 굴절 현상은 빛이 각각의 매질을 통과하는 속도가 다르기 때문에 일어나는데, 공기 속을 지나갈 때 빛의 속도는 투명한 유리를 통과할 때보다 더 빠르다. 두 매질에서 빛의 속도 차이가 크면 클수록 더 많이 굴절하게 된다. 진공을 지나가던 빛이 다른 매질을 만나면 얼마나 많이 꺾이는지 그 정도를 ‘굴절률’로 표시한다. 각 매질에서의 굴절률을…
더보기
일상 속 디스플레이 2020.04.21

일상 속 디스플레이의 발견 4편: 언제 어디서나 함께하는 OLED, 스마트워치로 건강까지 관리한다!

우리는 일상에서 매 순간 디스플레이를 통해 다양한 일들을 경험합니다. 디스플레이의 기술을 통해 보다 편리해진 삶의 변화를 느끼는 요즘! 아침에 눈을 뜨고 잠들기 전까지 우리와 함께하는 ‘디스플레이 하루의 시대 (Display of Things)’를 일러스트로 만나보세요.
더보기